7.4 Solving Exponential Equations Using Logarithms

Keep in Mind

- If two expressions are equal, then the logarithms of those expressions are also equal: if \(M = N \), then \(\log_{10} M = \log_{10} N \), where \(M > 0, N > 0 \).
- You can use one of these three methods to solve an exponential equation:
 - If possible, write both sides of the equation with the same base, set the exponents equal to each other, and solve for the unknown.
 - Take the logarithm of each side and solve for the unknown.
 - Use graphing technology, using the systems of equations strategies you have employed for other kinds of equations.
- Some calculators will only calculate logarithms with base 10. Even so, you can evaluate any logarithm with base \(b \) using the change of base formula:
 \[
 \log_b x = \frac{\log x}{\log b}
 \]

Example 1

Solve the following exponential equation:

\[
4^{x + 2} = 31
\]

Round to three decimal places.

Solution

Step 1. Since 31 is difficult to write as a power of 4, I took the logarithm of both sides.

\[
4^{x + 2} = 31
\]

\[
\log 4^{x + 2} = \log 31
\]

Step 2. I rewrote the expression on the left using the Power Law of Logarithms.

\[
(x + 2) \log 4 = \log 31
\]

Step 3. I isolated the expression with \(x \).

\[
\frac{(x + 2) \log 4}{\log 4} = \frac{\log 31}{\log 4}
\]

\[
x + 2 = \frac{\log 31}{\log 4}
\]

\[
x = \frac{\log 31}{\log 4} - 2
\]

Step 4. I evaluated for \(x \), using a calculator.

To three decimal places, \(x = 0.477 \).
Example 2

Solve the following exponential equation. Round to two decimal places.

\[5^x + 2 = 7^x - 1 \]

Solution

Step 1. Since the two sides of the equation cannot be written with the same base, I took the logarithm of both sides.

\[\log 5^x + 2 = \log 7^x - 1 \]

Step 2. I rewrote each side using the Power Law of Logarithms.

\[(x + 2) \log 5 = (x - 1) \log 7 \]

\[x \log 5 + 2 \log 5 = x \log 7 - \log 7 \]

Step 3. I isolated the expressions with \(x \).

\[2 \log 5 + \log 7 = x \log 7 - x \log 5 \]

\[2 \log 5 + \log 7 = x (\log 7 - \log 5) \]

\[\frac{2 \log 5 + \log 7}{\log 7 - \log 5} = x \]

Step 4. I evaluated for \(x \), using a calculator.

To two decimal places, \(x = 15.35 \).

Practice

1. Estimate the value of \(x \) in each equation to one decimal place. Then solve the equation. Show your work. Round your answer to three decimal places.

 a) \(10 = 4^x \)

 \[\log 10 = \log 4^x \]

 \[\log 10 = x \log 4 \]

 \[x = \frac{\log 10}{\log 4} = 1.661 \]

 b) \(4.2^x = 20 \)

 \[\log 4.2^x = \log 20 \]

 \[x \log 4.2 = \log 20 \]

 \[x = \frac{\log 20}{\log 4.2} = 2.087 \]

2. Estimate the value of \(x \) in each equation to one decimal place. Then solve the equation. Show your work. Round your answer to three decimal places.

 a) \(40 = 5(4^x) \)

 \[\frac{40}{5} = 4^x \]

 \[\log 8 = \log 4^x \]

 \[\log 8 = x \log 4 \]

 \[x = \frac{\log 8}{\log 4} = 1.500 \]

 b) \(60 = 100\left(\frac{1}{4}\right)^x \)

 \[x = \frac{\log 0.6}{\log \left(\frac{1}{4}\right)} \]

 \[0.6 = \left(\frac{1}{4}\right)^x \]

 \[\log 0.6 = x \log \left(\frac{1}{4}\right) \]

 \[\log 0.6 = x \log \left(\frac{1}{4}\right) \]

 \[x = 0.368 \]
3. Estimate the value of each logarithm, and then evaluate to three decimal places, using the change of base formula.

\[\log_2 12 \] \hspace{1cm} \[\log_8 2 \] \hspace{1cm} \[\log_6 40 \]

\[\frac{\log 12}{\log 2} = -3.858 \] \hspace{1cm} \[\frac{\log 2}{\log 8} = 0.333 \] \hspace{1cm} \[\frac{\log 40}{\log 6} = 2.059 \]

4. Write each expression as a base 10 logarithm. Evaluate to three decimal places.

\[\log_4 40 \] \hspace{1cm} \[\log_6 1000 \]

\[\frac{\log 40}{\log 4} = 2.601 \] \hspace{1cm} \[\frac{\log 1000}{\log 6} = -3.855 \]

\[\log_2 \frac{3}{8} \]

\[\frac{\log 3}{\log 8} = -1.415 \] \hspace{1cm} \[\log_{0.2} 400 \]

\[\frac{\log 400}{\log 0.2} = -3.723 \]

5. Solve each equation, and round your answer to two decimal places.

\[6^{x+1} = 22 \] \hspace{1cm} \[\left(\frac{2}{3} \right)^{-x} = 12 \]

\[\log 6^{x+1} = \log 22 \] \hspace{1cm} \[\log \left(\frac{2}{3} \right)^{-x} = \log 12 \]

\[(x+1) \log 6 = \log 22 \] \hspace{1cm} \[-x \log \left(\frac{2}{3} \right) = \log 12 \]

\[x+1 = \frac{\log 22}{\log 6} \] \hspace{1cm} \[-x = \frac{\log 12}{\log (\frac{2}{3})} \]

\[x+1 = 1.725 \] \hspace{1cm} \[-x = -6.129 \]

\[x = 0.725 \] \hspace{1cm} \[x = 6.129 \]

6. Freya has $3400 in an investment that earns 5% interest, compounded annually. Determine the number of years it will take for her balance to surpass $5000. Use the compound interest formula \(A = P(1 + i)^n \), where \(A \) represents the future value, \(P \) represents the present value, \(i \) represents the interest rate per compounding period, and \(n \) represents the number of compounding periods. Show your calculations.

\[\frac{5000}{3400} = \left(1 + 0.05 \right)^n \]

\[1.470588235 = 1.05^n \]

\[\log 1.470588235 = \log 1.05^n \]

\[\log 1.470588235 = n \log 1.05 \]

\[n = \frac{\log 1.470588235}{\log 1.05} \]

\[n \approx 7.9 \text{ yrs} \]
7. Solve each equation, and round your answer to two decimal places.

a) \(6^x - 1 = 3^{x+1}\)
\[
\log_6(6^x - 1) = \log_6(3^{x+1})
\]
\[
(x-1)\log_6 = (x+1)\log_3
\]
\[
x\log_6 - \log_6 = x\log_3 + \log_3
\]
\[
x\log_6 - x\log_3 = \log_3 + \log_6
\]
\[
x(\log_6 - \log_3) = \log_3 + \log_6
\]
\[
x = 4.17
\]

b) \(10^{x-2} = 7^{x+1}\)
\[
\log_{10}(10^{x-2}) = \log_{10}(7^{x+1})
\]
\[
(x-2)\log_{10} = (x+1)\log_7
\]
\[
x = 2\log_{10}7 + \log_{10}7 + 2
\]
\[
x = 18.37
\]

8. The healing of a wound with an initial area of 60 cm² can be modelled by the function \(A(t) = 60(10^{-0.023t})\), where \(A(t)\) represents the area of the wound, in square centimetres, after \(t\) days of healing. In how many days will 50% of the wound be healed? Show your calculations.

\[
30 = 60(10^{-0.023t})
\]
\[
0.5 = 10^{-0.023t}
\]
\[
\log 0.5 = \log 10^{-0.023t}
\]
\[
\log 0.5 = -0.023t \cdot \log 10
\]
\[
0.301 = -0.023t
\]
\[
t = 13.09 \text{ days}
\]

9. Which is closest to the value of \(x\) in the following exponential equation?

\[
5^{x-1} = 4^{x+2}
\]

A. 0.05
B. 2.1
C. 4.2
D. 19.6

10. Which is closest to the value of \(x\) in the following exponential equation?

\[
7^{x-2} = 3^{x+2}
\]

A. 7.2
B. 2.7
C. 2.9
D. 1.0

11. Kim has invested $7000 at 7.6% interest, compounded quarterly. The investment will be worth at least $10 000 after \(19\) quarters, or \(4.75\) years and \(57\) months.

12. $5000 is invested at 3.5% interest, compounded annually. The investment will have doubled in value after \(20\) years.

13. Jolene currently has $3900 in credit card debt. The interest rate on her credit card is 19.5%, compounded daily. If she makes no payments against the balance, her debt will have doubled after \(1298\) days, or about \(3.56\) years.
Notes

NR Page 185

11.

\[A = P \left(1 + \frac{r}{n}\right)^{nt} \]

\[\frac{10000}{7000} = \left(1 + \frac{0.076}{4}\right)^x \]

\[1.429 = (1 + 0.019)^x \]

\[1.429 = 1.019^x \]

\[\log 1.429 = \log 1.019^x \]

\[\log 1.429 = x \log 1.019 \]

\[x = \frac{\log 1.429}{\log 1.019} = 18.95 \text{ compounds} \]

\[\therefore 19 \text{ compounds} \]

\[\therefore \text{19 quarters} \]

\[\frac{19}{4} = 4.75 \text{ yrs} \]

\[4.75 \times 12 = 57 \text{ months} \]

12.

\[\frac{1000}{5000} = \frac{5000(1 + 0.035)^x}{5000} \]

\[2 = 1.035^x \]

\[\log 2 = \log 1.035^x \]

\[\log 2 = x \log 1.035 \]

\[x = \frac{\log 2}{\log 1.035} \]

\[x = 20.15 \text{ yrs} \]

13.

\[7800 = 3900 \left(1 + \frac{0.195}{365}\right)^x \]

\[2 = (\frac{1.000534}{1.000534})^x \]

\[\log 2 = x \log \left(\frac{1.000534}{1.000534}\right) \]

\[\frac{\log 2}{\log 1.000534} = x \]

\[1298 \text{ days} = x \]

\[\frac{1298}{365} = 3.56 \text{ yrs} \]