5.2 Characteristics of the Equations of Polynomial Functions

Keep in Mind

- When a polynomial function is in standard form
 - The maximum number of x-intercepts the graph may have is equal to the degree of the function.
 - The maximum number of turning points the graph may have is equal to one less than the degree of the function.
 - The degree and leading coefficient indicate the end behaviour of the graph of the function.
 - The y-intercept of the graph is equal to the constant term of the function.
- Linear and cubic polynomial functions have similar end behaviour.
 - Negative leading coefficient: the graph extends from Quadrant II to Quadrant IV.
 - Positive leading coefficient: the graph extends from Quadrant III to Quadrant I.
- Quadratic polynomial functions have a different end behaviour.
 - Negative leading coefficient: the graph extends from Quadrant III to Quadrant IV.
 - Positive leading coefficient: the graph extends from Quadrant II to Quadrant I.

Example 1

Determine the following characteristics of each function, using its equation.

a) \(f(x) = 4x + 2 \)

b) \(f(x) = -5x^2 + 2x - 1 \)

Solution

a) I considered each characteristic of the equation \(f(x) = 4x + 2 \).

- The value of the greatest exponent is 1, so the degree is 1. Since the degree is 1, the function is linear, so its graph is a line, and the graph has one x-intercept.
- The constant term is 2, so the y-intercept is 2.
- The leading coefficient, 4, is positive, so the graph extends from Quadrant III to Quadrant I.

TIP

In your descriptions of characteristics of a function include
- number of x-intercepts
- y-intercept
- end behaviour
- domain
- range
- number of possible turning points
• There are no restrictions or x. The domain is $\{x \mid x \in \mathbb{R}\}$.
• There are no restrictions or y. The range is $\{y \mid y \in \mathbb{R}\}$.
• This function is linear, so it has no turning points.

b) I considered each characteristic of the equation $f(x) = -5x^2 + 2x - 1$.

• The value of the greatest exponent is 2, so the degree is 2. Since the degree is 2, the function is quadratic, so its graph is a parabola, and the graph may have 0, 1, or 2 x-intercepts.
• The constant term is -1, so the y-intercept is -1.
• The leading coefficient, -5, is negative, and the equation is quadratic, so the graph extends from Quadrant III to Quadrant IV.
• There are no restrictions or x. The domain is $\{x \mid x \in \mathbb{R}\}$.
• The range is $\{y \mid y \leq \text{maximum}, y \in \mathbb{R}\}$.
• This function is quadratic, so it has one turning point.

Example 2

Match each graph to the correct polynomial function.

A.

B.

i) $f(x) = x^2 + 3x - 1$

ii) $g(x) = -x^2 + 3x + 2$

Solution

Step 1. I looked at the number of turning points in each graph.
Each graph has one turning point, so both $f(x)$ and $g(x)$ are quadratic functions.

Step 2. I looked at the end behaviour of each graph.
Graph A extends from Quadrant III to Quadrant IV, so the leading coefficient must be negative. Graph A matches with $g(x)$.
Graph B extends from Quadrant II to Quadrant I, so the leading coefficient must be positive. Graph B matches with $f(x)$.

Step 3. I verified my conclusion by looking at the y-intercepts.
The y-intercept of Graph A is 2. The constant term of $g(x)$ is 2, so again, the graph and equation match.
The y-intercept of Graph B is -1, matching the constant term of $f(x)$.
Graph A matches with $g(x)$, and Graph B matches with $f(x)$.
Practice

1. Match each graph with the correct polynomial function. Provide your reasoning.

Graph A

number of x-intercepts: 1

y-intercept: 2

end behaviour: from Quadrant II to Quadrant IV
so the leading coefficient is negative

domain: \(x \in \mathbb{R} \) range: \(y \in \mathbb{R} \)

number of turning points: 0

Graph A represents a linear polynomial function. It matches with function \(f(x) \)

Graph B

number of x-intercepts: 1

y-intercept: -1

end behaviour: from Quadrant II to Quadrant IV
so the leading coefficient is negative

domain: \(x \in \mathbb{R} \) range: \(y \in \mathbb{R} \)

number of turning points: 2

Graph B represents a cubic polynomial function. It matches with function \(g(x) \)

Graph C

number of x-intercepts: 1

y-intercept: -2

end behaviour: from Quadrant III to Quadrant I
so the leading coefficient is positive

domain: \(x \in \mathbb{R} \) range: \(y \in \mathbb{R} \)

number of turning points: 0

Graph C represents a cubic polynomial function. It matches with function \(g(x) \)

Graph D

number of x intercepts: 1

y-intercept: 2

end behaviour: from Quadrant III to Quadrant I
so the leading coefficient is positive

domain: \(x \in \mathbb{R} \) range: \(y \in \mathbb{R} \)

number of turning points: 0

Graph D represents a linear polynomial function. It matches with function \(j(x) \)
2. Write a polynomial function that satisfies each set of characteristics.
 a) extending from Quadrant III to Quadrant IV, one turning point, y-intercept of 4
 b) degree 1, decreasing, y-intercept of -2
 c) extending from Quadrant III to Quadrant I, y-intercept of -3
 d) two turning points, y-intercept of 5

NUMERICAL RESPONSE

3. State the characteristics of each polynomial function.
 a) \(f(x) = -3x^2 - 2x + 1 \)
 • degree: 2
 • leading coefficient: -3
 • constant term: 1
 • number of x-intercepts: 2 (see on graphing calc)
 • y-intercept: 1
 • extends from Quadrant III to Quadrant IV
 • domain: \(x \in \mathbb{R} \)
 • range: \(y \leq \text{max} \), \(y \leq \frac{3}{2} \)
 • number of turning points: 1

b) \(h(x) = 4x^3 + 2x^2 - x + 34 \)
 • degree: 3
 • leading coefficient: 4
 • constant term: 34
 • number of x-intercepts: 1
 • y-intercept: 34
 • extends from Quadrant III to Quadrant I
 • domain: \(x \in \mathbb{R} \)
 • range: \(y \leq \text{max} \)
 • number of turning points: 2

WRITTEN RESPONSE

4. The life expectancy of Canadian males born from 1920 to 2008 can be modelled by the polynomial function \(E(x) = 0.2339x - 390.8 \), where \(E \) is the life expectancy in years and \(x \) is the year of birth.
 a) Describe the characteristics of the graph of the polynomial function.
 Explain your answer.

b) Would you use this graph to estimate the life expectancy of a male born in the year 1000? Explain.

 No, that would yield a negative age. The age expectancy is only for the years 1920-2008.